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A B S T R A C T

This study aims to investigate the effect of electrode nanoarchitecture on the performance of electric
double layer capacitor (EDLC) porous electrodes consisting of highly-ordered monodisperse spherical
carbon nanoparticles. To do so, cyclic voltammograms, reproducing three-electrode measurements, were
numerically generated for electrodes with different thicknesses and nanoparticle diameters arranged in
either simple cubic (SC) or face-centered cubic (FCC) packing structure. The transient three-dimensional
simulations of interfacial and transport phenomena in the porous electrodes were based on a continuum
model accounting for (1) binary symmetric electrolytes with finite ion size, (2) electric field-dependent
dielectric constant of the electrolyte, (3) the Stern layer at the electrode/electrolyte interface, along with
(4) Ohmic potential drop in the electrode. For both FCC and SC packing structures, the areal capacitance
(in mF/cm2) increased with decreasing sphere diameter. In addition, for a given sphere diameter, FCC
packing featured larger equilibrium capacitance than SC packing. These observations were attributed to
larger electric field at the carbon sphere surface for smaller spheres and/or FCC packing. In all cases, the
areal capacitance remained constant at low scan rates but decreased beyond a critical scan rate. The latter
rate-dependent regime was reached at lower scan rates for thicker electrodes due to resistive losses
across the electrode. Interestingly, limitation due to ion diffusion through the porous electrode was not
observed. Finally, dimensional analysis was performed by scaling the CV cycle period by the time scale for
electron transport in the electrode. This study illustrates powerful numerical simulation tools that can be
used to select materials and electrolytes and to design and optimize EDLC electrodes.

© 2017 Elsevier Ltd. All rights reserved.
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1. Introduction

Electric double layer capacitors (EDLCs) have drawn significant
attention due to their promise as electric energy storage systems
[1–4]. They are typically made of two porous carbon electrodes
immersed in a concentrated liquid electrolyte [5–19]. They store
electric energy physically in the electric double layer forming at a
porous electrode/electrolyte interface. They feature fast charging
and discharging rates and thus large power density. They also have
long cycle life thanks to reversible EDL formation. They can be used
in various applications including regenerative braking, digital
telecommunication, and dynamic stabilization of the utility grid
[1–4,20].

The performance of EDLCs is greatly influenced by the
morphology of the electrodes [2,21–24,12,25–27,11,28,29].
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Experimental measurements have been reported for different
porous carbon electrodes made of ordered or disordered carbon
spheres [2,21–24,12,25–27,11,28,29]. However, experiments to
improve electrode or device performance have been performed
by trial and error, albeit informed by physical intuition. Unfortu-
nately, this approach can be time-consuming and costly, and
intuition is made difficult by the large number of parameters and
the different competing interfacial and transport phenomena. On
the other hand, most previous numerical models treated the
electrode microarchitecture as homogeneous with some effective
macroscopic properties determined from effective medium
approximations (EMAs) and assumed transport phenomena as
one-dimensional [30–59]. These models typically do not account
for the detailed porous electrode architecture [30–59].

This paper aims to investigate the effect of electrode nano-
architecture on the performance of EDLC porous electrodes. To do
so, a three-dimensional modeling tool was developed to simulate
interfacial and transport phenomena in porous electrodes filled
with electrolyte under dynamic charging and discharging. In fact,
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Nomenclature

a Effective ion diameter (nm)
c Ion concentration (mol/L)
C Capacitance (mF/cm2 or F/g)
d Diameter of the carbon sphere (nm)
D Diffusion coefficient of ions in electrolyte (m2/s)
E Magnitude of the electric field (V/m)
e Elementary charge, e = 1.602 �10�19 C
F Faraday constant, F = eNA = 9.648 � 104 C mol�1

H Stern layer thickness (nm)
i Index of the carbon spheres
j Magnitude of current density (A/m2 or A/g)
L Half of interelectrode distance (nm)
Ls Thickness of the carbon current collector (nm)
Lc Total thickness of the electrode (nm)
Mc Molecular mass of the electrode (kg)
n Normal vector of a surface
N Number of the carbon spheres
n Refractive index of the electrolyte
nc Cycle number
ne Number of free electrons per atom
NA Avogadro number, NA = 6.022 � 1023 mol�1

Ni Ion flux of species i (mol m�2s�1)
Q Charge stored (C)
r Location in three-dimensional space (nm)
rC/E Location of the current collector/electrolyte interface

(nm)
rE/E Location of the electrode/electrolyte interface (nm)
rcl Location of the electrolyte centerline (nm)
rH Location of the Stern/diffuse layer interface (nm)
Ru Universal gas constant, Ru = 8.314 J mol�1K�1

T Local temperature (K)
t Time (s)
ue Drift velocity of electrons in the electrode (m/s)
v Scan rate of the cyclic voltammetry (V/s)
z Ion valency

Greek symbols
a Parameter for electron transport in the electrode
e0 Vacuum permittivity, e0 = 8.854 �10�12 F m�1

er dielectric constant of the electrolyte
rc Density of the electrode (kg/m3)
sc Electrical conductivity of carbon electrode (S/m)
tD Time scale for ion transport in the electrolyte (s)
te Time scale for electron transport in the electrode

(s)
tCV Cycle period (s)
c Electric potential (V)
cmin, cmax Minimum and maximum of the potential

window (V)
cs Imposed potential (V)

Superscripts and subscripts
* Refers to dimensionless variable
BET Refers to the surface area of electrode/electrolyte

interface
fp Refers to footprint surface
g Refers to gravimetric variables
1 Refers to bulk electrolyte
i Refers to ion species i
n Refers to normal component of a variable
St Refers to Stern layer
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cyclic voltammograms of three-electrode systems were repro-
duced numerically for various electrode dimensions and mor-
phologies. This could accelerate the design and optimization of
EDLC electrodes to maximize their energy and power densities.

2. Background

2.1. Experimental studies

Experimental studies have established that the specific surface
area (in m2/g) as well as the porous architecture of the carbon
electrodes affect the performance of EDLCs [2,21–24,12,25–
27,11,28,29]. For example, Vix-Guterl et al. [12] studied the
performance of EDLC with porous carbon electrodes made from
propylene (CPr), pitch (CP), and sucrose (CS) in 1 M aqueous H2SO4,
6 M aqueous KOH, and 1 M (C2H5)4NBF4/CH3CN electrolytes.
Electrodes made of CPr and CP had mesopores with specific surface
area of about 900 m2/g and specific pore volume of 0.6 cm3/g while
electrodes made of CS had additional micropores resulting in larger
specific surface area of about 2000 m2/g and specific pore volume
of 1.1 cm3/g. The gravimetric capacitances of CS electrodes were
200 F/g (areal capacitance 10 mF/cm2) and 110 F/g (areal
capacitance 5.5 mF/cm2) in aqueous and organic electrolyte,
respectively. These were larger than the gravimetric capacitances
of CPr and CP electrodes of about 100 F/g and 60 F/g in aqueous and
organic electrolyte, respectively. The difference was attributed to
the larger specific surface area. In addition, Kim et al.[22]
assembled an EDLC device made of two identical electrodes
consisting of monodisperse porous carbon spheres about 500 nm
in diameter either three-dimensional ordered in FCC packing or
disordered with specific surface area of 1260 m2/g, in 1 M aqueous
Na2SO4 electrolyte. The CV curves for electrodes made of ordered
carbon spheres retained a nearly rectangular shape for scan rates
as fast as 1 V/s while those with disordered carbon spheres showed
an increasingly resistive behavior as scan rate increased. In fact, the
electrodes made of ordered carbon spheres had a gravimetric
capacitance of 60 F/g (areal capacitance 4.76 mF/cm2) which was
about 50% larger than the capacitance of electrodes made of
disordered carbon spheres.

2.2. Numerical studies

Various models and simulation methods have been developed
to predict the performance of EDLCs [30–60]. RC circuit models
consist of modeling an EDLC device by an electric circuit consisting
of an arbitrary number of ideal capacitors and resistors [30–38].
These models require prior knowledge of electrical behavior and
properties of EDLCs determined experimentally [35]. In addition,
RC circuit models neglect ion diffusion and non-uniform ion
concentrations in the electrolyte [36–38]. Moreover, two different
RC circuit models may produce similarly acceptable impedance
response. This suggests that fitted values of the resistances and
capacitances in the RC circuit models provides “little or no direct
information about the physical meaning of the elements for such
models” [40]. Therefore, RC circuit models can be used to control
the operation of specific EDLCs but not for designing and
optimizing electrode morphology.

Alternatively, molecular simulations have been used extensive-
ly to simulate ion transport in the electrolyte near the electrode/
electrolyte interface of EDLCs including Monte Carlo (MC)
simulations [41,42] and molecular dynamic (MD) simulations
[41,43–47]. MC simulations are based on statistical mechanics [42]
while MD simulations use atomic interaction potentials [43–47].
Both have the ability to capture ion transport and EDL formation at
the electrode/electrolyte interface at the atomic scale [42–47].
However, MC and MD simulations cannot simulate long charging/



Fig. 1. Schematics of the EDLC electrodes simulated made of ordered carbon
spheres of diameter d in (a) SC packing and (b) FCC packing.
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discharging processes with time scale similar to experimental
cyclic voltammetry or galvanostatic cycling. In addition, they
cannot simulate the multiscale nature of the processes taking place
in actual EDLC devices with realistic electrode and electrolyte
dimensions due to the excessively large number of atoms or
molecules that it would require to simulate.

Finally, continuum models have been developed to investigate
the charging/discharging dynamics of EDLCs with porous electro-
des [48–59]. Continuum models can account for transport
phenomena over the length scale of the electrode or the device
and over the typical potential window and timescale of cyclic
voltammetry or galvanostatic experiments. Most existing contin-
uum models for EDLCs treat the electrode microarchitecture as
homogeneous with some effective macroscopic properties deter-
mined from effective medium approximations (EMAs) based on
porosity and specific area [48–59]. Unfortunately, these models
cannot account for details of the 3D porous electrode architecture.
On the other hand, Wang and Pilon [60] studied EDLC electrodes
with 3D mesoporous structure but under equilibrium conditions.
To the best of our knowledge, no continuum model simulations of
3D electrode architecture predicting the dynamic charging/
discharging processes have been reported to date.

The objective of this study is to investigate the effect of
electrode nanoarchitecture on the performance of EDLC porous
electrodes consisting of highly-ordered monodisperse spherical
carbon nanoparticles. To do so, cyclic voltammograms were
numerically generated for different scan rates, electrode thick-
nesses, and carbon nanoparticle diameters arranged in simple
cubic (SC) or face-centered cubic (FCC) packing. The numerical
results were interpreted in light of normal electric field at the
electrode/electrolyte interface, ion transport in the electrolyte, and
resistive losses across the electrode.

3. Analysis

3.1. Schematic and assumptions

Fig. 1 shows schematics of the simulated EDLC electrodes
consisting of (a) simple cubic (SC) or (b) face-centered cubic (FCC)
packing of monodisperse carbon spheres of diameter d. By virtue of
symmetry, a unit cell containing quarter-spheres was simulated.
The current collector, electrode and electrolyte thicknesses were
denoted by Ls, Lc, and L, respectively.

To make the problem mathematically tractable, the following
assumptions were made: (1) The electrolyte was binary and
symmetric, i.e., it consisted of two ion species of opposite valency
�z (z > 0). The two ion species were further assumed to have
identical diameter a and diffusion coefficient D. (2) The Stern layer
contained no free charge and its thickness H was approximated as
the radius of the ions, so that H = a/2 [61,3,62]. (3) The transport
properties of the electrodes and electrolyte were taken as constant
except for the electrolyte dielectric constant er(E) which depended
on the magnitude E of the local electric field vector. (4) Bulk motion
of the electrolyte was negligible. (5) No redox reaction or ion
intercalation took place within the electrode. (6) Heat generation
was ignored and the EDLC was isothermal. (7) Electrical contact
resistance between the carbon spheres was neglected.

3.2. Governing equations

The local electric potential c(r, t) in the electrode material was
governed by the continuity equation combined with Ohm0s law to
yield [63,64]

r�ðscrcÞ ¼ 0 ð1Þ
where sc is the electrical conductivity of the electrode material
(i.e., of the packed spheres).

The modified Poisson-Nernst-Planck (MPNP) model governed
the spatiotemporal evolution of the electric potential c(r, t) and
concentrations of the two ion species ci(r, t) in the binary and
symmetric electrolyte according to [65,66,37]

with

@ci
@t

¼ �r�Ni in the diffuse layer; for i ¼ 1; 2: ð2cÞ

Here, e0 = 8.854 � 10�12 F m�1 is the vacuum permittivity, er is
the field-dependent dielectric constant of the electrolyte, and
F = eNA is the Faraday constant, with e and NA being the elementary
charge and Avogadro number, respectively. The mass flux vector
Ni(r, t) of ion species “i” (in mol/m2s) at location r and time t was
defined as [61]

Ni r; tð Þ ¼ �Drci �
zFDci
RuT

rc

� DNAa3ci
1 � NAa3ðc1 þ c2Þ

r c1 þ c2ð Þ; for i

¼ 1; 2 ð3Þ
where D is the diffusion coefficient of both ion species. The three
terms on the right-hand side of Equation (3) correspond to the ion
fluxes due to diffusion, electromigration, and steric effects,
respectively [65,67]. This model accounts for finite ion size and
is applicable to cases with large electric potential and/or
electrolyte concentrations.



Fig. 2. (a, b) Footprint current density jfp and (c, d) areal current density jBETas functions of surface potential cs at scan rate v ¼ 1 V/s for carbon spheres in SC packing with
diameter d of (a, c) d = 15 nm, and (b, d) d = 30 nm.
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3.3. Initial and boundary conditions

In order to solve Equations (1) to (3) for the time-dependent
potential c(r, t) and ion concentrations ci(r, t) in the three-
dimensional space, one needs one initial condition and two
boundary conditions in each direction for each variable. Zero
electric potential and uniform ion concentrations equal to the bulk
concentrations c1 were used as initial conditions for solving the
MPNP model, i.e.,

cðr; 0Þ ¼ 0 V and ciðr; 0Þ ¼ c1; for i ¼ 1; 2 ð4Þ
The potential at the current collector/electrode interface was

imposed as cs(t). During cyclic voltammetry measurements, cs(t)
varied linearly with time according to [61]

csðtÞ ¼ cmin þ v½t � ðnc � 1ÞtCV � for ðnc � 1ÞtCV � t < ðnc � 1=2ÞtCV
cmax � v½t � ðnc � 1=2ÞtCV � for ðnc � 1=2ÞtCV � t < nc tCV

�

ð5Þ
where nc is the cycle number and tCV is the cycle period while cmin

and cmax are the minimum and maximum values of the imposed
potential cs(t), respectively. By virtue of symmetry in the two-
electrode device, the boundary condition in the device centerline,
located at rcl= (x = Lc + L, y, z), was given by

cðrcl; tÞ ¼ 0 and ciðrcl; tÞ ¼ c1: ð6Þ
Moreover, the electric potential and current density were

continuous across the spherical electrode/electrolyte interface
located at rE/E and planar current collector/electrolyte interface
located at rC/E so that

c r�k ; t
� � ¼ c rþk ; t

� �
and � sc

@c
@n

r�k ; t
� �

¼ �e0er @
2c

@n@t
rþk ; t
� �

; with k ¼ E=E or C=E ð7Þ

where @/@n is the gradient normal to the electrode/electrolyte
interface.

The electric potential varied linearly across the Stern layer [see
Equation (2a)] so that the normal electric field at the planar and
spherical Stern/diffuse layer interfaces, located at rH satisfied
[60,61]

@c
@n

rH; tð Þ ¼ cðrC=EÞ � cðrHÞ
H

; for planar current collector surfaces;

ð8Þ



Fig. 3. (a) Footprint capacitance Cfp, (b) areal capacitance CBET, and (c) gravimetric capacitance Cg as functions of electrode thickness Lc under quasi-equilibrium conditions
(low scan rates) for carbon spheres in SC packing with diameter d = 15, 30, and 40 nm.
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�e0er @c@n rH; tð Þ ¼ CSt
s

d
d þ 2H

Þ2 cðrE=E; tÞ � cðrH; tÞ� �
;

for convex spherical electrode surfaces: ð9Þ
Here, the Stern layer capacitance for a sphere of diameter d is given
by the Helmholtz model expressed as [68]

CSt
s ¼ e0er

H
ð1 þ 2H

d
Þ ð10Þ

These boundary conditions accounted for the presence of the Stern
layers without explicitly simulating them in the computational
domain thus reducing significantly the number of meshes and
making possible the numerical solution of the strongly coupled
equations considered [60].

Based on assumption (5), no ion intercalated into the electro-
des. Thus, the ion mass flux vectors vanished at the electrode/
electrolyte and current collector/electrolyte interfaces such that
[61]

Niðrk; tÞ ¼ 0 for i ¼ 1; 2 with k ¼ E=E or C=E: ð11Þ
By virtue of symmetry in the electrode packings, the normal
electric field at the side walls of the simulated domain (Fig. 1) and
the ion flux across the side walls also vanished, i.e., @c/@n = 0, and
Ni = 0(i = 1, 2).

3.4. Constitutive relationships

In order to solve the transient 3D governing Equations (1) to (3)
and their initial and boundary conditions, a total of 14 parameters
were needed. These parameters include (i) the electrolyte
properties er, a, D, z, and c1, (ii) the electrode material conductivity
sc, (iii) the electrode dimensions d, Ls, Lc, L, and (iv) the operating
conditions cmax, cmin, T, and v.

The Booth model was used to account for the effect of the local
electric field E =� r c on the electrolyte dielectric constant
expressed as [60,69–72],

where n is the refractive index of the electrolyte solution, er(0) is
the dielectric constant at zero electric field, and b is a semi-
empirical constant. The electrolyte simulated was (C2H5)4NBF4



Fig. 4. (a) Magnitude of the normal electric field En at the surface of carbon spheres
for electrodes made of 3 carbon spheres in SC packing with diameter d = 15, 30, or 40
nm at t = 0.49tCV (or cs= 0.98 V). (b) Corresponding electric potential c(x/d) as a
function of x/d along the x-direction given by (0 � x � L, y = 0, z = d/2).
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(TEABF4) in propylene carbonate at room temperature featuring n =
1.42 [73], er(0) = 64.4 [74], and b = 1.314 x 10 �8 m/V [69]. In
addition, the bare ion diameter a of (C2H5)4N+ and BF�4 were 0.68
nm and 0.33 nm [75]. However, as discussed in Refs. [76,65],
“Smaller bare ions tend to be more heavily solvated and therefore
have larger effective diameters”. Moreover, electrolyte ions are less
solvated when the electrolyte concentration increases, resulting in
smaller effective ion diameter [11,77–80]. Considering the fact that
the solubility of (C2H5)4NBF4 in propylene carbonate at room
temperature is 1 mol/L [81], the effective ion diameters of
(C2H5)4N+ and BF�4 were assumed to be identical and equal to
0.68 nm. Furthermore, the diffusion coefficient D of (C2H5)4N+ ions
and BF�4 in propylene carbonate at room temperature was taken as
3.17 x 10�10 m2/s [82]. The ion valency was z = 1 and bulk
concentration of the ion species was chosen as c1 = 1 mol/L, as
commonly used experimentally [27]. In addition, the value was
chosen as sc = 5 S/m based on the typical range of conductivity of
carbon between 10�6 and 102 S/m [83,84]. Moreover, the thickness
of the planar current collector was taken as Ls = 10 nm and the
length of the electrolyte domain simulated was L = 100 nm. The
thickness of the porous carbon electrode Lc as well as the diameter
of the carbon spheres d were treated as variables. Finally, the
temperature was taken as room temperature, i.e. T = 298 K. The
electrode was cycled between cmin = 0 V and cmax = 1 V. The scan
rate varied from 1 to 105 V/s.
3.5. Method of solution

The governing equations along with the initial and boundary
conditions were solved using COMSOL 4.4. Mesh element size was
chosen to be the smallest at the electrode/electrolyte interface
where ion concentration gradient and potential gradient were the
largest. Moreover, the numerical convergence was considered to be
reached when the local electric potential c(r, t) and the normal
current density jn = j � n at the electrode/electrolyte interface
changed within 1% when reducing the minimum mesh element
size and mesh growth rate in the boundary layer near the
electrode/electrolyte interfaces by a factor of two. For example, the
total number of finite elements was on the order of 107 for the
simulations of electrodes made of 5 ordered carbon spheres shown
in Fig. 1. In addition, the adaptive time step was controlled by the
relative and absolute tolerance set to be 0.01 and 0.001. This
enabled the use of smaller time step when potential and current
density changed more rapidly. The simulations were run on
Hoffman2 shared computing cluster of UCLA with 8 to 12
processors and 32 to 64 GB of RAM.

Finally, several cycles were simulated and an oscillatory steady
state in c(r, t) and jn = j � n was considered to be reached when the
maximum relative error between the value of each variable at time
t and its value at time t�tCV throughout the computational domain
was less than 1%. These conditions were typically met by the third
cycle for all conditions simulated. The CPU time for each simulation
reported ranged between 1 and 4 days.

3.6. Data processing

Cyclic voltammetry simulations consist of imposing a triangular
time-dependent potential cs(t) [Equation (5)] and predicting the
current density to plot CV curves. The current density at the
electrode/electrolyte and current collector/electrolyte interfaces
arising from the formation and dissolution of electric double layer
was expressed (in A/m2) as [61,85]

jn rk; tð Þ ¼ �e0er @@t
@c
@n

rk; tð Þ; with k ¼ E=E or C=E: ð14Þ

The current densities averaged over the footprint area,
electrode/electrolyte interface area, and mass of the electrode
respectively denoted by jfp (in A/m2), jBET (in A/m2), and jg (in A/g)
can be defined as

jfp tð Þ ¼
ÐÐ

ABET
jnðr; tÞdABET

Af p
; jBET tð Þ ¼

ÐÐ
ABET

jnðr; tÞdABET

ABET
; jg tð Þ

¼
ÐÐ

ABET
jnðr; tÞdABET

m
ð15Þ

where Afp is the footprint area of the electrode, corresponding to
the area of the planar current collector, ABET is the electrode/
electrolyte interfacial area that can be measured experimentally by
the Brunauer-Emmett-Teller (BET) method, and m is the total mass
of all the carbon spheres constituting the electrode.

The corresponding capacitances can be estimated from the
predicted CV curves according to [86]

Ck vð Þ ¼ 1
cmax � cmin

I
jkðtÞ
2v

dcs; with k ¼ f p; BET; or g: ð16Þ

where jk(t) is given by Equation (15), v is the scan rate, and cs is the
potential imposed at the current collector and given by Equation
(5).



Fig. 5. Magnitude of the normal electric field En at the surface of carbon spheres for electrodes made of 1 to 9 carbon spheres in SC packing with diameter d = 15 nm at
t = 0.49tCV (or cs = 0.98 V).

Fig. 6. Areal capacitance CBET as a function of the dimensionless electrode thickness
Lc/d under quasi-equilibrium conditions (low scan rates) for carbon spheres in
either FCC or SC packing with diameter d = 15 nm.
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4. Results and discussion

4.1. Influence of carbon sphere number and diameter

CV curves of electrodes made of carbon spheres in SC packing
were simulated under quasi-equilibrium conditions corresponding
to situations when the capacitance was independent of scan rate
[61]. Figures 2(a) and 2 (b) show the footprint current density jfp as
a function of the imposed potential cs, at scan rate v ¼ 1 V/s, for
electrodes made of N carbon spheres in SC packing with diameter d
equals to either 15 nm (1 �N� 9) or 30 nm (1 �N� 5),
corresponding to BET surface area of 200 m2/g and 100 m2/g,
respectively. These figures indicate that for given sphere diameter
and surface potential, the footprint current density increased with
increasing sphere number. This can be attributed to the increasing
electrode surface area with increasing carbon sphere number N
while the footprint remained unchanged. In fact, Figures 2(c) and 2
(d) plot the current density jBET per unit surface area of electrode/
electrolyte interface as a function of imposed potential cs for d
equals to 15 and 30 nm, respectively. These figures establish that
the areal current density jBETwas weakly dependent of the number
N of carbon spheres. In other words, the total current i (in A) was
linearly proportional to the BET surface area ABET.

Moreover, Fig. 3 shows (a) the footprint capacitance Cfp, (b) the
areal capacitance CBET, and (c) the gravimetric capacitance Cg of
electrodes made of multiple carbon spheres in SC packing with
diameter d of 15, 30, and 40 nm as functions of the electrode
thickness Lc(= Nd) under quasi-equilibrium conditions. It indicates
that all three capacitances Cfp, CBET, and Cg decreased with
increasing sphere diameter d for a given electrode thickness Lc.
On the other hand, for a given sphere diameter d, Cfp increased
almost linearly with increasing electrode thickness Lc. On the other
hand, CBET first increased with increasing electrode thickness Lc
then reached a plateau for Lc� 75 nm. Finally, Cg remained nearly
constant for all electrode thicknesses considered. Note that the
capacitance CBET ranged between 10 and 50 mF/cm2 while Cg
ranged between 20 and 100 F/g. These values were comparable
with reported experimental measurements for electrodes with
similar nanoarchitecture [12,11,22]. For example, areal capacitance
CBET was reported to be between 10 and 15 mF/cm2 [11] and Cg
between 60 and 110 F/g [12,11] for electrodes made of ordered
mesoporous carbon spheres in non-aqueous electrolytes under
cyclic voltammetry with potential window of 3 V [11] or 2 V [12]. In
addition, Kim et al. [22] reported gravimetric capacitance Cg
around 60 F/g for carbon electrodes with similar nanoarchitecture
and potential windows in aqueous electrolytes under galvanostatic
cycling with small current. To explain the trends in Cfp, CBET, and Cg



Fig. 7. Magnitude of the normal electric field En at the surface of carbon spheres in
(a) FCC packing and (b) SC packing with diameter d = 15 nm at t = 0.98tCV (or cs =
0.98 V).

B.-A. Mei, L. Pilon / Electrochimica Acta 255 (2017) 168–178 175
as functions of sphere diameter d and electrode thickness Lc, one
needs to consider the normal electric field at the sphere surfaces.

Fig. 4(a) shows the magnitude of the normal component En of
the local electric field (i.e., En= E � n =� @c/@n) at the electrode/
electrolyte interface for N = 3 spheres in SC packing with diameter
d of 15, 30, and 40 nm, at t = 0.49tCV corresponding to cs = 0.98 V,
i.e., near the end of the charging stage. Note that, during charging,
the normal electric field increased everywhere at the electrode
surface but the relative profile remained unchanged. Fig. 4(a)
indicates that the magnitude of the normal electric field En
increased with decreasing sphere diameter d. This can be
attributed to the fact that for smaller spheres, the electric potential
decayed from c(rE/E, t) 	 cs(t) at the electrode surface to zero in
the local bulk electrolyte within the porous electrode structure
over a smaller distance. To further illustrate the effect of sphere
diameter on the normal electric field, Fig. 4(b) plots the electric
potential along the x-direction as a function of the dimensionless
position x/d at t = 0.49tCV for sphere diameter d equals to 15, 30,
and 40 nm. It indicates that the electric potential profile scaled
with x/d. In other words, the potential c(x/d) and its derivative
@c/@(x/d) were independent of d, as were @c/@(y/d) and @c/@(z/d)
(not shown). Therefore, the magnitude of the normal electric field
�@c/@n at the electrode surface was proportional to 1/d. Thus, for a
given potential, electrodes consisting of smaller carbon spheres
attracted more ions to their surface resulting in larger areal or
gravimetric charge densities (see Figure S1 in supplementary
material). Consequently, the capacitances Cfp, CBET, and Cg increased
with decreasing sphere diameter d [Fig. 3(a)].

Fig. 5 shows the magnitude of the normal electric field En for
electrodes made of 1 to 9 carbon spheres in SC packing for diameter
d of 15 nm at t = 0.49tCV. The systematically smaller value of En
resulted in less charge storage on the surface of the first sphere
facing the planar current collector (see Figure S2 in supplementary
material). This was due to the fact that the planar current collector
and the first sphere were at nearly the same potential cs(t) at all
times t. On the other hand, the magnitude of the normal electric
field En on other spheres remained unchanged with increasing
sphere number N. Thus, the initial rise and the plateau in CBET with
increasing electrode thickness Lc or sphere number N [Fig. 3(b)] can
be attributed to the decreasing relative contribution of the first
sphere to the total charge storage.

4.2. Influence of electrode morphology

Fig. 6 shows the areal capacitance CBET as a function of the
dimensionless electrode thickness Lc/d for the electrodes made of
carbon spheres in either SC or FCC packings with diameter d of 15
nm under quasi-equilibrium conditions, i.e., low scan rate. It
indicates that CBET increased with increasing thickness for SC
packing before reaching a plateau for Lc/d � 5. By contrast, CBET for
electrodes with FCC packing was independent of electrode
thickness. Moreover, Fig. 6 establishes that for any given electrode
thickness, the areal capacitance of electrodes made of carbon
spheres in FCC packing was systematically larger than that in SC
packing.

Fig. 7 compares the magnitude of the normal electric field at the
electrode/electrolyte interface for electrodes made of multiple
carbon spheres in SC and FCC packings for diameter d of 15 nm, at
t = 0.49tCV corresponding to cs = 0.98 V. It indicates that for similar
electrode thickness Lc, the magnitude of the normal electric field En
at the carbon sphere surface was larger for FCC packing structure
than for SC packing, resulting in larger capacitance CBET (Fig. 6).
This can be attributed to the fact that the FCC structure was denser
and featured less distance for the electric potential to decay from
c(rE/E, t) 	 cs(t) at the carbon sphere surfaces to zero in the local
bulk electrolyte within the porous electrode structure.

Fig. 8(a) shows the areal capacitance CBET for the electrodes
made of carbon spheres in FCC packing with 3 (Lc = 2.12d) and 10 (Lc
= 7.07d) rows of spheres and in SC packing with 2 (Lc = 2d) and 7 (Lc
= 7d) spheres as a function of scan rate v. It indicates that CBET was
independent of scan rate (quasi-equilibrium regime) for both FCC
and SC packings at low scan rates. In addition, the electrodes made
of carbon spheres in FCC packing had larger capacitance than that
with SC packing, as previously observed (Fig. 6). However,
regardless of carbon sphere packing structure (SC or FCC), the
capacitance CBET dropped sharply at a critical scan rate which
decreased with increasing electrode thickness. This could be due to
ion diffusion limitation in the tortuous electrode structure and/or
resistive losses in the potential propagation across the electrode at
high scan rates.

Fig. 8(b) shows the areal capacitance CBET as a function of scan
rate v for the electrodes made of 2 carbon spheres in SC packing
with ion diffusion coefficient D equals to 3.17 x 10�9, 3.317 x 10�10,
and 3.17 x 10�11 m2/s. It indicates that the diffusion coefficient had
no effect on the capacitance at any scan rate considered. In other
words, the decrease in capacitance at high scan rates was not due
to ion diffusion limitation through the porous electrode. On the
other hand, Fig. 8(c) shows the areal capacitance CBET as a function
of scan rate v for electrodes made of 2 spheres with diameter d = 15
nm in SC packing and electrical conductivity sc of 5, 0.5, and 0.05 S/
m. It indicates that the sharp drop in CBET occurred at smaller
critical scan rate as the electrical conductivity sc decreased. In fact,
the potential propagation across the electrode was limiting the
capacitance CBET at high scan rates. Note that Wang and Pilon [85]
previously observed ion diffusion limitation for planar (i.e.,
nonporous) electrodes resulting in the sharp drop in CBET at high
scan rates. However, the sharp drop in CBET was observed at higher
scan rate than in the present study. In the porous electrodes under



Fig. 8. (a) Areal capacitance CBET of electrodes made of FCC and SC packing of carbon spheres with diameter d = 15 nm as functions of scan rate v for different (a) electrode
thicknesses, (b) diffusion coefficients, and (c) electrode conductivities. (b) Dimensionless areal capacitance CBET/CBET,max of electrodes made of FCC and SC packing
of carbon spheres with diameter d = 15 nm as functions of dimensionless scan rate v
 with parameters Lc/d, D, sc and morphology summarized in Table 1.

Table 1
Parameters for eight cases of dimensionless capacitances reported in Fig. 8(d)

Case number Lc/d Morphology D (m2/s) sc (S/m)

1 2 SC 3.17 x 10�10 5
2 2.12 FCC 3.17 x 10�10 5
3 7 SC 3.17 x 10�10 5
4 7.07 FCC 3.17 x 10�10 5
5 2 SC 3.17 x 10�9 0.5
6 2 SC 3.17 x 10�10 0.5
7 2 SC 3.17 x 10�11 0.5
8 2 SC 3.17 x 10�10 0.05
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consideration, resistive losses limited capacitance before ion
diffusion at high scan rates.

Finally, Fig. 8(d) shows the dimensionless capacitance CBET/CBET,
max as a function of dimensionless scan rate v
 for both FCC and SC
packings with diameter d = 15 nm and for different values of
electrical conductivity sc, ion diffusion coefficient D, and electrode
thickness Lc, as summarized in Table 1.

In addition, the dimensionless scan rate v
 was expressed as
[85]

v
 ¼ vte
cmax � cmin

¼ te
tCV=2

ð17Þ

where tCV is the CV cycle period and the time scale te is chosen to
be the characteristic time for potential propagation (i.e., for
electron transport in the electrode material) instead of the
diffusion time scale tD= L2/D used by Wang and Pilon [85]. This
time scale te can be expressed as [87]

te ¼ Lc
ue

¼ rcneeL
2
c

Mcðcmax � cminÞsc
: ð18Þ

Here, Lc is the thickness of the porous carbon electrode, ue is the so-
called drift velocity, i.e., the average velocity of electrons under
electric field E = (cmax� cmin)/Lc, and expressed as ue = (McscE)/
(rcnee), where rc is the density of the electrode material, ne is the
number of free electrons per atom in the electrode material, Mc is
the atomic mass (in u) of the electrode material and sc is the
electrode material electrical conductivity. For carbon nanospheres,
rc = 500 kg/m3 [84], ne = 1, and Mc = 12.01 u. Fig. 8(d) indicates that
the capacitance ratio CBET/CBET,max for electrodes with different
electrical conductivity sc, ion diffusion coefficient D, electrode
thickness Lc, and packing structures collapsed on the same curve
when plotted as a function of dimensionless scan rate v
. In
addition, for dimensionless scan rate v
 smaller than 0.3, the areal
capacitance was maximum and rate-independent, corresponding
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to v � a=½ðcmax � cminÞ2L2c � where a = 0.3Mcsc/rcnee depends only
on the electrode material. Thus, electrode materials with large
values of a are desirable to achieve high rate performance. For
example, a = 4.7 for gold [88] while a ranges between 7.5 x
10�8� 1.2 x 10�3 for carbon nanoparticles [84] and between 4.1 x
10�13� 1.5 x 10�4 for activated carbon (porous) [83,84] depending
on their electrical conductivity and density.

5. Conclusion

This paper presented, for the first time, three-dimensional
transient simulations of EDLC electrodes consisting of monodis-
perse carbon spheres with different diameters and ordered in FCC
and SC packing structures under cyclic voltammetry. Simulations
were based on a continuum model accounting for interfacial and
transport phenomena throughout the electrode and the electro-
lyte. For any given morphology, the areal capacitance increased
with decreasing sphere diameter. In addition, FCC packing featured
larger capacitance than SC packing. These results were explained
by considering the magnitude of the electric field at the carbon
spheres/electrolyte interfaces. Moreover, for all cases considered,
the areal capacitance remained constant at low scan rate but
decreased beyond a critical scan rate when potential propagation
across the electrode could not follow the rapid changes in the
potential imposed at the current collector. In fact, the rate-
dependent regime of capacitance was reached at lower scan rates
for thicker electrodes, regardless of the electrode morphology.
Finally, dimensional analysis was performed to collapse capaci-
tance versus scan rate plots, based on ratio of CV cycle period and
the time scale for electron transport in the electrode. These results
and the computational tools developed can be used to design and
optimize EDLC electrodes to maximize their capacitance and
energy and/or power densities.
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